
Expert Review

Metabonomics Techniques and Applications to Pharmaceutical
Research & Development

John C. Lindon,1,2 Elaine Holmes,1 and Jeremy K. Nicholson1

Received December 21, 2005; accepted January 13, 2006

Abstract. In this review, the background to the approach known as metabonomics is provided, giving a

brief historical perspective and summarizing the analytical and statistical techniques used. Some of the

major applications of metabonomics relevant to pharmaceutical Research & Development are then

reviewed including the study of various influences on metabolism, such as diet, lifestyle, and other

environmental factors. The applications of metabonomics in drug safety studies are explained with special

reference to the aims and achievements of the Consortium for Metabonomic Toxicology. Next, the role

that metabonomics might have in disease diagnosis and therapy monitoring is provided with some

examples, and the concept of pharmacometabonomics as a way of predicting an individual’s response to

treatment is highlighted. Some discussion is given on the strengths and weaknesses, opportunities of, and

threats to metabonomics.
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METABONOMICS BACKGROUND AND ITS ROLE
IN PHARMACEUTICAL RESEARCH &
DEVELOPMENT

There has been a revolution in the techniques and
approaches used in molecular biology over the past decade
or so, and following the decoding of the human and other
genomes, studies have largely switched to simultaneous
determination of gene expression changes between subjects,
or following drug treatment or other intervention, mainly
carried out using microarray technology (1). This type of

study has been given the name of transcriptomics. Later, an
equivalent impetus to map out all protein expression changes
in a cell or tissue has evolved and has been termed
proteomics. Nowadays, there are nearly 200 different named
Bomics,^ many of which terms will not survive because of
their very specialist application, and indeed, many of these
terms are not necessary because they serve only to describe a
methodology that already has a perfectly valid name.

Prior to the development of the various omics approach-
es, the simultaneous analysis of the plethora of metabolites
seen in biological fluids had been carried out largely using
nuclear magnetic resonance (NMR) spectroscopy (2), and
when these complex data sets were first interpreted using
multivariate statistics (3,4), the concept of metabonomics was
born. Thus, metabonomics encompasses the comprehensive
and simultaneous systematic profiling of metabolite levels
and their systematic and temporal changes through such
effects on diet, lifestyle, environment, genetics, and pharma-
ceuticals, both beneficial and adverse, in whole organisms.
This is achieved by the study of biofluids and tissues with the
data being interpreted using chemometrics techniques (5,6).
A parallel approach mainly from plant science and from the
study of in vitro systems has led to the term metabolomics
also being coined (7), and the methods and approaches used
in the two disciplines are now highly convergent.

This multivariate approach holds out the promise for
the pharmaceutical communities of a means by which disease
and drug effect endpoints can be obtained. One of the prob-
lems with transcriptomics, in particular, is the difficulty in
some cases of relating observed gene expression fold changes
to such conventional disease and pharmaceutically relevant
endpoints. This does not apply so much to proteomics, but
this technology is still slow and labor-intensive, and techno-
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logical advances are required before it can be made high
throughput.

Nevertheless, there remains a strong imperative to be
able to integrate information at the transcriptomic, proteomic,
and metabonomic levels despite these different levels of bio-
logical control showing very different timescales of change.
This is because some time courses can be very rapid, such as
gene switching, some require much longer timescales, e.g.,
protein synthesis, or, in the case of metabolic changes, can
encompass enormous ranges of timescales. Counterintuitive-
ly, biochemical changes do not always occur in the order,
transcriptomic, proteomic, metabolic, because, for example,
pharmacological or toxicological effects at the metabolic level
can induce subsequent adaptation effects at the proteomic or
transcriptomic levels. One important potential role for high
throughput and highly automated metabonomics methods,
therefore, could be to direct the timing of more expensive or
labor-intensive proteomic and transcriptomic analyses to
maximize the probability of observing meaningful and rele-
vant biochemical changes using those techniques.

In addition, overlaid with this temporal complexity is the
fact that environmental and lifestyle effects have a large effect
at all levels of molecular biology. Gene and protein expression
effects and metabolite levels can be altered by such factors,
and this variation has to be incorporated into any analysis as
part of intersample and interindividual variation. Even
healthy animals and man can be considered as Bsuper organ-
isms,^ with an internal ecosystem of diverse symbiotic gut mi-
croflora that have metabolic processes that interact with the
host and for which, in many cases, the genome is not known.
The complexity of mammalian biological system and the di-
verse features that need to be measured to allow omics data
to be fully interpreted have been reviewed recently (8), and it
has been argued that novel approaches will continue to be re-
quired to measure and model metabolic processes in various
compartments from such global systems with different in-
teracting cell types, and with various genomes, connected by
cometabolic processes (9).

In this review, the main technologies used in metabono-
mics are summarized, brief details of the types of samples used
are given, and the current pharmaceutical applications of me-
tabonomics are described. Some prospects for the future are
then discussed.

METABONOMICS SAMPLES

Metabonomics studies of pharmaceutical relevance gen-
erally use biofluids or cell or tissue extracts. These are often
easy to obtain and, for mammalian biofluids, can provide an
integrated view of the whole systems biology. Urine and
plasma are obtained essentially noninvasively and hence can
be used more easily for disease diagnosis and, in a clinical
trial setting, for monitoring drug therapy. However, there is a
wide range of fluids that have been studied, including seminal
fluids, amniotic fluid, cerebrospinal fluid (CSF), synovial
fluid, digestive fluids, blister and cyst fluids, lung aspirates,
and dialysis fluids. In addition, a number of metabonomics
studies have used analysis of tissue biopsy samples and their
lipid and aqueous extracts, such as from vascular tissue in
studies of atherosclerosis (10). The approach can also be used
to characterize in vitro cell systems such as Caco-2 cells,

commonly used for cell uptake studies (11), and other model
cell systems such as yeast (12), tumor cells (13), and tissue
spheroids, which can be used as model systems for liver or
tumor investigations, for example (14).

METABONOMICS ANALYTICAL TECHNOLOGIES

The main analytical techniques that are employed for
metabonomic studies are based on NMR spectroscopy and
mass spectrometry (MS). The latter technique requires a
preseparation of the metabolic components using either gas
chromatography (GC) after chemical derivatization or liquid
chromatography (LC), with the newer method of ultra-per-
formance liquid chromatography (UPLC) being used increas-
ingly. The use of capillary electrophoresis (CE) coupled to
MS has also shown some promise. Other more specialized
techniques such as Fourier transform infrared (FTIR)
spectroscopy and arrayed electrochemical detection have
been used in some cases (15,16). The main limitation of the
use of FTIR is the low level of detailed molecular identifi-
cation that can be achieved, and indeed, in the case quoted
above, MS was also employed for metabolite identification.

Similarly, although an array of coulometric detectors
following high-performance liquid chromatography (HPLC)
separation does not identify compounds directly, the combi-
nation of retention time and redox properties can serve as a
basis for database searching of libraries of standard com-
pounds. The separation output can also be directed to a mass
spectrometer for additional identification experiments (16).

All metabonomics studies result in complex multivariate
data sets that require visualization software and chemometric
and bioinformatic methods for interpretation. The aim of
these procedures is to produce biochemically based finger-
prints that are of diagnostic or other classification value. A
second stage, crucial in such studies, is to identify the
substances causing the diagnosis or classification, and these
become the combination of biomarkers that define the
biological or clinical context.

There have been a number of reviews of metabonomics
recently that describe the various techniques used and which
also summarize the main areas of application (17,18).

Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a
nondestructive technique, widely used in chemistry, that pro-
vides detailed information on molecular structure, both for
pure compounds and in complex mixtures (19). NMR spec-
troscopic methods can also be used to probe metabolite mo-
lecular dynamics and mobility as well as substance
concentrations through the interpretation of NMR spin
relaxation times and by the determination of molecular
diffusion coefficients (20).

Automatic sample preparation is possible for NMR
spectroscopy involving buffering and addition of D2O as a
magnetic field lock signal for the spectrometer, and standard
NMR spectra typically take only a few minutes to acquire
using robotic flow-injection methods. For large-scale studies,
bar-coded vials containing the biofluid can be used, and the
contents of these can be transferred and prepared for analysis
using robotic liquid handling technology into 96-well plates
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under laboratory information management system (LIMS)
control. Currently, using such approaches, well over 100
samples per day can be measured on one spectrometer, each
taking a total data acquisition time of only around 5 min.
Alternatively, for more precious samples or for those of

limited volume, conventional 5-mm or capillary NMR tubes
are usually used, either individually or using a commercial
sample tube changer and automatic data acquisition.

A typical 1H NMR spectrum of urine contains thousands
of sharp lines from predominantly low molecular weight
metabolites. The large interfering NMR signal arising from
water in all biofluids is easily eliminated by use of appropriate
standard NMR solvent suppression methods, either by sec-
ondary RF irradiation at the water peak chemical shift or by
use of a specialized NMR pulse sequence that does not excite
the water resonance. The position of each spectral band
(known as its chemical shift and measured in frequency terms,
in parts per million, from that of an added standard reference
substance) gives information on molecular group identity and
its molecular environment. The reference compound used in
aqueous media is usually the sodium salt of 3-trimethylsilyl-
propionic acid (TSP) with the methylene groups deuterated to
avoid giving rise to peaks in the 1H NMR spectrum. The
multiplicity of the splitting pattern on each NMR band and
the magnitudes of the splittings (caused by nuclear spinYspin
interactions mediated through the electrons of the chemical
bonds and known as J coupling) provide knowledge about
nearby protons, their through-bond connectivities, the rela-
tive orientation of nearby CYH bonds, and hence also
molecular conformations. The band areas relate directly to
the number of protons giving rise to the peak and hence to
the relative concentrations of the substances in the sample.
Absolute concentrations can be obtained if the sample
contains an added internal standard of known concentration,
or if a standard addition of the analyte of interest is added to
the sample, or if the concentration of a substance is known by
independent means (e.g., glucose in plasma can be quantified
by a conventional biochemical assay).

Blood plasma and serum contain both low and high
molecular weight components, and these give a wide range of
signal linewidths. Broad bands from protein and lipoprotein
signals contribute strongly to the 1H NMR spectra, with sharp
peaks from small molecules superimposed on them (21).
Standard NMR pulse sequences, where the observed peak
intensities are edited on the basis of molecular diffusion
coefficients or on NMR relaxation times [such as the Carr-
Purcell-Meiboom-Gill (CPMG) spin-echo sequence], can be
used to select only the contributions from macromolecules
or, alternatively, to select only the signals from the small
molecule metabolites, respectively (19). It is also possible to
use these approaches to investigate molecular mobility and
flexibility and to study intermolecular interactions such as the
reversible binding between small molecules and proteins
(20). Some typical 1H NMR spectra are given in Fig. 1,
showing the varied profiles from mouse liver tissue, lipid and
aqueous extracts of liver tissue, and blood plasma.

Identification of biomarkers can involve the application
of a range of techniques including two-dimensional (2-D)
NMR experiments (19). Although all of the armory of the
usual analytical physical chemistry can be used, including
MS, 1H NMR spectra of urine and other biofluids, even

though they are very complex, allow many resonances to be
assigned directly based on their chemical shifts, signal
multiplicities, and by adding authentic material, and further
information can be obtained by using the spectral editing
techniques described above.

2-D NMR spectroscopy can be useful for increasing sig-
nal dispersion and for elucidating the connectivities between
signals, thereby enhancing the information content and help-
ing to identify biochemical substances. These include the
1HY1H 2-D J-resolved experiment, which attenuates the peaks
from macromolecules and yields information on the multi-
plicity and coupling patterns of resonances, a good aid to
molecule identification. The appropriate projection of such a
spectrum onto the chemical shift axis yields a fingerprint of
peaks from only the most highly mobile small molecules, with
the added benefit that all of the spin-coupling peak multi-
plicities have been removed. Other 2-D experiments known
as correlation spectroscopy (COSY) and total correlation
spectroscopy (TOCSY) provide 1HY1H spinYspin coupling
connectivities, giving information on which hydrogens in a
molecule are close in chemical bond terms. Use of other types
of nuclei, such as naturally abundant 13C or 15N, or where
present 31P, can be important to help assign NMR peaks, and
here, such heteronuclear correlation NMR experiments are
achievable. These benefit from the use of so-called inverse
detection, where the lower sensitivity or less abundant nucleus
NMR spectrum (such as 13C) is detected indirectly using the
more sensitive/abundant nucleus (1H) by making use of
spinYspin interactions such as the one-bond 13CY1H spinYspin
coupling between the nuclei to effect the connection. These
yield both 1H and 13C NMR chemical shifts of CH, CH2, and
CH3 groups, useful again for identification purposes. There is
also a sequence that allows correlation of protons to qua-
ternary carbons based on long-range 13CY1H spinYspin
coupling between the nuclei.

A very useful recent advance in NMR technology has
been the development of cryogenic probes where the
detector coil and preamplifier (but not the samples) are
cooled to around 20 K. This has provided an improvement in
spectral signal-to-noise ratios of up to a factor of 5 by re-
ducing the thermal noise in the electronics of the spec-
trometer. Conversely, because the NMR signal-to-noise ratio
is proportional to the square root of the number of coadded
scans, shorter data acquisition times by up to a factor of 25
become possible for the same amount of sample. NMR spe-
ctroscopy of biofluids detecting the much less sensitive 13C
nuclei, which also only have a natural abundance (1.1%), also
becomes possible because of the increase in signal-to-noise
ratio (22). This technology also makes the use of tissue-
specific microdialysis samples more feasible (23).

Within the last few years, the development of a
technique called high-resolution 1H magic angle spinning
(MAS) NMR spectroscopy has made feasible the acquisition
of high-resolution NMR data on small pieces of intact tissues
with no pretreatment (24Y26). Rapid spinning of the sample
(typically at õ4Y6 kHz) at an angle of 54.7- relative to the
applied magnetic field serves to reduce the loss of informa-
tion caused by line-broadening effects seen in nonliquid
samples such as tissues. These broadenings are caused by
sample heterogeneity and residual anisotropic NMR param-
eters that are normally averaged out in free solution where
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molecules can tumble isotropically and rapidly. MAS NMR
spectroscopy has straightforward, but manual, sample prep-
aration. NMR spectroscopy on a tissue sample in a MAS
experiment is the same as solution-state NMR, and all
common pulse techniques can be employed to study meta-
bolic changes and to perform molecular structure elucidation
and molecular dynamics studies.

Mass Spectrometry

Mass spectrometry (MS) has also been widely used in
metabolic fingerprinting and metabolite identification. Al-

though most studies to date have been on plant extracts and
model cell system extracts, its application to mammalian
studies is increasing. In general, a prior separation of the

complex mixture sample using chromatography is required.
MS is inherently considerably more sensitive than NMR
spectroscopy, but it is necessary generally to employ different
separation techniques (e.g., different LC column packings) for

different classes of substances. MS is also a major technique
for molecular identification purposes, especially using tandem
MS (MS-MS) methods for fragment ion studies. Analyte

quantitation by MS in complex mixtures of highly variable
composition can be impaired by variable ionization and ion
suppression effects. For plant metabolic studies, most inves-

tigations have used chemical derivatization to insure volatility
and analytical reproducibility, followed by GC-MS analysis.
Some approaches using MS rely on more targeted studies, for

example, by detailed analysis of lipids (27).
For metabonomics applications on biofluids such as

urine, an HPLC chromatogram is generated withMS detection,
usually using electrospray ionization, and both positive and

negative ion chromatograms can be measured. At each
sampling point in the chromatogram, there is a full mass
spectrum; thus, the data are three dimensional in nature, i.e.,

retention time, mass, and intensity. Given this very high
resolution, it is possible to cut out any mass peaks from
interfering substances such as drug metabolites without affect-

ing the integrity of the data set.
The recently introduced UPLC is a combination of a

1.7-mm reversed-phase packing material and a chromato-
graphic system, operating at around 12,000 psi. This has

enabled better chromatographic peak resolution and in-
creased speed and sensitivity to be obtained for complex mix-
ture separation. UPLC provides around a 10-fold increase in

speed and a 3- to 5-fold increase in sensitivity compared with a
conventional stationary phase. Because of the much improved
chromatographic resolution of UPLC, the problem of ion

suppression from coeluting peaks is greatly reduced. UPLC-
MS has already been used for metabolic profiling of urines
from males and females of two groups of phenotypically

normal mouse strains and a nude mouse strain (28). A com-
parison of MS-detected HPLC and UPLC chromatograms
from a mouse urine sample is shown in Fig. 2.

Recently, CE coupled to MS has also been explored as a
suitable technology for metabonomics studies (29). Metabo-
lites are first separated by CE based on their charge and size

and then selectively detected using MS monitoring. This
method has been used to measure 352 metabolic standards
and then employed for the analysis of 1692 metabolites from

Bacillus subtilis extracts, revealing changes in metabolite levels
during the bacterial growth.

For biomarker identification, it is also possible to

separate out substances of interest on a larger scale from a
complex biofluid sample using techniques such as solid-phase
extraction or HPLC. For metabolite identification, directly
coupled chromatography-NMR spectroscopy methods can

also be used. The most general of these Bhyphenated^
approaches is HPLC-NMR-MS (30), in which the eluting
HPLC peak is split, with parallel analysis by directly coupled

NMR and MS techniques. This can be operated in on-flow,
stopped-flow, and loop-storage modes and thus can provide
the full array of NMR- and MS-based molecular identification

tools. These include 2-D NMR spectroscopy as well as MS-MS
for identification of fragment ions and Fourier transform-mass
spectrometry (FT-MS) or time of flight-mass spectrometry

(TOF-MS) for accurate mass measurement and, hence, deri-
vation of molecular empirical formulae.

In summary NMR and MS approaches are highly
complementary, and use of both is often necessary for full

molecular characterization. MS can be more sensitive with
lower detection limits provided the substance of interest can be
ionized, but NMR spectroscopy is particularly useful for

distinguishing isomers, for obtaining molecular conformation
information, and for studies of molecular dynamics and
compartmentation.

Chemometrics Methods

An NMR spectrum of a biofluid sample can be thought

of as an object with a multidimensional set of metabolic
coordinates, the values of which are the spectral intensities at
each data point, and the spectrum is therefore a point in a
multidimensional metabolic hyperspace. The initial objective

in metabonomics is to classify a spectrum based on identifi-
cation of its inherent patterns of peaks and, secondly, to
identify those spectral features responsible for the classifica-

tion. The approach can also be used for reducing the dimen-
sionality of complex data sets, for example, by 2-D or 3-D
mapping procedures, to enable easy visualization of any clus-

tering or similarity of the various samples. Alternatively, in
what are known as supervised methods, multiparametric data
sets can be modeled so that the class of separate samples (a
validation set) can be predicted based on a series of mathe-

matical models derived from the original data or training
set (31).

One of the simplest techniques that has been used

extensively in metabonomics is principal components analysis

Fig. 1. (A) 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) Carr<Purcell<Meiboom<Gill (CPMG) spectrum (600 MHz) of

intact control liver tissue, (B) 1H NMR (600 MHz) spectrum of a control lipid soluble liver tissue extract, (C) solvent presaturation 1H NMR

spectrum (600 MHz) of a control aqueous soluble liver tissue extract, and (D) 1H NMR CPMG spectrum (500 MHz) of control blood plasma.

3HB, 3-D-hydroxybutyrate; Cho, choline; Chol, cholesterol; Glu, glucose; GPC, glycerophosphorylcholine; Gly, glycerol; LDL, low density

lipoprotein; PCho, phosphocholine; TMAO, trimethylamine-N-oxide; VLDL, very low density lipoprotein. Reproduced with permission from

Coen et al. (65).
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(PCA). This technique expresses most of the variance within a

data set using a smaller number of factors or principal
components. Each PC is a linear combination of the original
data parameters whereby each successive PC explains the

maximum amount of variance possible not accounted for by
the previous PCs. Each PC is orthogonal and therefore inde-
pendent of the other PCs; thus, the variation in the spectral set

is usually described by many fewer PCs compared to the
number of original data point values because the less impor-
tant PCs simply describe the noise variation in the spectra.
Conversion of the data matrix to PCs results in two matrices

known as scores and loadings. Scores, the linear combina-
tions of the original variables, are the coordinates for the
samples in the established model and may be regarded as the

new variables. In a scores plot, each point represents a single
sample spectrum. The PC loadings define the way in which
the old variables are linearly combined to form the new

variables and indicate those variables carrying the greatest
weight in transforming the position of the original samples
from the data matrix into their new position in the scores
matrix. In the loadings plot, each point represents a different

spectral intensity. Thus, the cause of any spectral clustering
observed in a PC scores plot is interpreted by examination
of the loadings that cause any cluster separation. In addi-

tion, there are many other visualization (or unsupervised)
methods, such as nonlinear mapping and hierarchical cluster
analysis.

One widely used supervised method (i.e., using a training

set of data with known outcomes) is partial least squares
(PLS) (32). This is a method which relates a data matrix
containing independent variables from samples, such as

spectral intensity values (an X matrix), to a matrix containing
dependent variables (e.g., measurements of response, such as
toxicity scores) for those samples (a Y matrix). PLS can also

be used to examine the influence of time on a data set, which
is particularly useful for biofluid NMR data collected from
samples taken over a time course of the progression of a
pathological effect. PLS can also be combined with discrim-

inant analysis (DA) to establish the optimal position to place
a discriminant surface which best separates classes. It is
possible to use such supervised models to provide classifica-

tion probabilities and quantitative response factors for a
wide range of sample types, but given the strong possibility
of chance correlations when the number of descriptors is

large, it is important to build and test such chemometric
models using independent training data and validation data
sets. Extensions of this approach allow the evaluation of
those descriptors that are completely independent (orthogo-

nal) to the Y matrix of endpoint data. This orthogonal signal
correction (OSC) can be used to remove irrelevant and
confusing parameters and has been integrated into the PLS

algorithm for optimum use (33).
Apart from the methods described above that use linear

combinations of parameters for dimension reduction or

Fig. 2. Three-dimensional plots of retention time, m/z, and intensity from control white male mouse urine using (left) high-performance liquid

chromatography-mass spectrometry (HPLC-MS) with a 2.1 cm � 100 mm Waters Symmetry 3.5 mm C18 column, eluted with 0Y95% linear

gradient of water with 0.1% formic acid/acetonitrile with 0.1% formic acid over 10 min at a flow rate of 0.6 mL/min and (right) ultra-

performance liquid chromatography-mass spectrometry (UPLC-MS) with 2.1 cm � 100 mm Waters ACQUITY 1.7 mm C18 column, eluted

with the same solvents at a flow rate of 0.5 mL/min. In both cases, the column eluent was monitored by electrospray ionization orthogonal

acceleration-time of flight-mass spectrometry from 50 to 850 m/z in positive ion mode. Reproduced with permission from Wilson et al. (28).

1080 Lindon, Holmes, and Nicholson



classification, other methods exist that are not limited in this
way. For example, neural networks comprise a widely used
nonlinear approach for modeling data. A training set of data

is used to develop algorithms, which Blearn^ the structure of
the data and can cope with complex functions. The basic
software network consists of three or more layers, including an

input level of neurons (spectral descriptors or other variables),
one or more hidden layers of neurons which adjust the
weighting functions for each variable, and an output layer

which designates the class of the object or sample. Recently,
probabilistic neural networks, which represent an extension to
the approach, have shown promise for metabonomics appli-
cations in toxicity (34). Other approaches that are currently

being tested include genetic algorithms, machine learning, and
Bayesian modeling (35).

New Approaches to Biomarker Identification

Using Chemometrics

Recently, a new method for identifying multiple NMR

peaks from the same molecule in a complex mixture, hence
providing a new approach to molecular identification, has been
introduced. This is based on the concept of statistical total

correlation spectroscopy (STOCSY) (36). This takes advantage
of the multicolinearity of the intensity variables in a set of
spectra (e.g., 1H NMR spectra) to generate a pseudo-2-D
NMR spectrum that displays the correlation among the
intensities of the various peaks across the whole sample. This
method is not limited to the usual connectivities that are
deducible from the more standard 2-D NMR spectroscopic
methods, such as TOCSY. Added information is available by
examining lower correlation coefficients or even negative
correlations because this leads to connection between two or
more molecules involved in the same biochemical pathway. In
an extension of the method, the combination of STOCSY with
supervised chemometrics methods offers a new framework for
analysis of metabonomic data. In a first step, a supervised
multivariate DA can be used to extract the parts of NMR
spectra related to discrimination between two sample classes.
This information is then combined with the STOCSY results
to help identify the molecules responsible for the metabolic
variation. To illustrate the applicability of the method, it has
been applied to 1H NMR spectra of urine from a meta-
bonomic study of a model of insulin resistance based on the
administration of a carbohydrate diet to three different mice
strains, in which a series of metabolites of biological impor-

Fig. 3. One-dimensional statistical total correlation spectroscopy (STOCSY) analysis to identify peaks correlated to that at

the chemical shift, d 2.51. The degree of correlation across the spectrum has been color-coded and projected on the

spectrum. (a) Full spectrum, (b) partial spectrum between d 7.1 and 7.5, and (c) partial spectrum between d 2.4 and 3.0. The

STOCSY procedure enabled the assignment of this metabolite as 3-hydroxyphenylpropionic acid. Reproduced with

permission from Cloarec et al. (36).
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tance could be conclusively assigned and identified by use
of the STOCSY approach (36). This is illustrated in Fig. 3,
where the approach has been used to identify the metabolite
3-hydroxyphenylpropionic acid.

The approach is not limited to NMR spectra alone and
has been extended to other forms of data. It has recently
been applied to coanalysis of both NMR and mass spectra
from a metabonomic toxicity study (37). This allowed better
assignment of biomarkers of the toxin effect by using the
correlated but complementary information available from
the NMR and mass spectra taken on a whole sample cohort.

APPLICATIONS OF METABONOMICS RELEVANT
TO PHARMACEUTICAL RESEARCH &
DEVELOPMENT

Phenotypic and Physiological Effects

To relate therapeutic or toxic effects to normality or to

understand the biochemical alterations caused by disease, it is
necessary to have a good comprehension of what constitutes a
normal biochemical profile. A number of studies have used

metabonomics in this type of application to identify metabolic
differences, in experimental animals such as mice and rats,
caused by a range of inherent and external factors (38). Such
differences may help explain differential toxicity of drugs

between strains and interanimal variation within a study.
Many effects can be distinguished using NMR-based metabo-
nomics, including male/female differences, age-related

changes, estrus cycle effects in females, diet, diurnal effects,
and interspecies differences and similarities (38). Similarly
some preliminary results have been obtained using the UPLC-

MS method on normal and obese Zucker rats and on black,
white, and nude mice (39). Considerable effort is being spent
trying to elucidate the complex interactions between diet,

health, and therapy (40).
Metabonomics has also been used for the phenotyping of

mutant and transgenic animals and the investigation of the
consequences of transgenesis such as the transfection process

used to introduce a new gene (41). The development of a
genetically engineered animal is often made using such trans-
fection procedures, and it is important to differentiate unin-

tended consequences of this process from the intended result.
Metabonomic approaches can give insight into the metabolic
similarities or differences between mutant or transgenic animals

and the human disease processes that they are intended to
simulate. This leads to a better evaluation of their appropriate-
ness for use as disease models and for drug efficacy studies.

The importance of the symbiotic relationship between

mammals and their gut microfloral populations has been
recognized (8) and highlighted by a study in which axenic
(germ free) rats were allowed to acclimatize in normal labo-

ratory conditions, and their urine biochemical profiles were
monitored for 21 days using 1H NMR spectroscopy (42). An
interesting example of the phenotypic differences caused by
variations in gut microflora has been highlighted by the study
of the same strain of rat from the same supplier but housed
in separate colonies at the supplier (43). It was commented
that the effect on drug metabolism and drug safety assessment

of having different microfloral populations, in what would
otherwise seem to be a homogenous population, is still
unknown. Furthermore, the situation can be complicated by
infections or pathological agents, and the combined influence
of gut microflora and parasitic infections on urinary
metabolite profiles has also been elucidated (44).

Preclinical Drug Candidate Safety Assessment

The selection of robust candidate drugs for development

based on minimization of the occurrence of drug adverse
effects is one of the most important aims of pharmaceutical
Resarch & Development, and the pharmaceutical industry is

now embracing metabonomics for evaluating the adverse
effects of candidate drugs.

Metabonomics can be used for definition of the metabolic

hyperspace occupied by normal animals and the consequential
rapid classification of a biofluid sample as normal or abnormal.
If the sample is regarded as abnormal, then classification of
the target organ or region of toxicity, the biochemical mecha-

nism of that toxin, the identification of combination bio-
markers of toxic effect, and evaluation of the time course of
the effect, e.g., the onset, evolution, and regression of toxicity,

can all be determined. There have been many studies using 1H
NMR spectroscopy of biofluids to characterize drug toxicity
going back to the 1980s (2), and the role of metabonomics
in particular, and magnetic resonance in general, in toxi-
cological evaluation of drugs has been comprehensively
reviewed recently (45). However, the combined use of NMR
spectroscopy and HPLC-MS is beginning to be used for
toxicity studies, and this has been exemplified by a study
on the nephrotoxin gentamycin (46).

The usefulness of metabonomics for the evaluation of
xenobiotic toxicity effects has recently been comprehensively
explored by the successful Consortium for Metabonomic
Toxicology (COMET). This was formed between five phar-
maceutical companies and Imperial College London, UK
(47), with the aim of developing methodologies for the acqui-
sition and evaluation of metabonomic data generated using
1H NMR spectroscopy of urine and blood serum from rats and
mice for preclinical toxicological screening of candidate drugs.
A flowchart for the project operation is shown in Fig. 4 (top).

A feasibility study was carried out at the start of the
project, using the same detailed protocol and using the same
model toxin, over seven sites in the companies and their
appointed contract research organizations. This was used to
evaluate the levels of analytical and biological variations that
could both arise using metabonomics on a multisite basis. The
intersite NMR analytical reproducibility revealed the high
degree of robustness expected for this technique when the
same samples were analyzed both at Imperial College and at
various company sites. This gave a multivariate coefficient of
regression between paired samples of only about 1.6% (48).
Additionally, the biological variability was evaluated by a
detailed comparison of the ability of the companies to
provide consistent urine and serum samples for an in-life
study of the same toxin, with all samples measured at the
Imperial College. There was a high degree of consistency
between samples from the various companies, and dose-
related effects could be distinguished from intersite variation.

To achieve the project goals, new methodologies for
analyzing and classifying the complex data sets were
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developed. For example, because the predictive expert
system that was developed takes into account the metabolic
trajectory over time, a new way of comparing and scaling
these multivariate trajectories was developed (called
SMART) (49). Additionally, a novel classification method
for identifying the class of toxicity based on all of the NMR
data for a given study has been generated. This has been
termed classification of unknowns by density superposition

(CLOUDS) and is a novel nonneural implementation of a
classification technique developed from probabilistic neural
networks (50). The flowchart for the diagnostic expert system
is shown in Fig. 4 (bottom).

This consortium showed that it is possible to construct
predictive and informative models of toxicity using NMR-
based metabonomic data, delineating the whole time course of
toxicity. The successful outcome is evidenced by the generated

Fig. 4. Top: operational flowchart for the Consortium for Metabonomic Toxicology (COMET) project.

CRO, Contract Research Organisation; LIMS, Laboratory Information Management System; DBMS,

Database Management System. Bottom: component activities in the COMET expert system operation.
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databases of spectral and conventional results for a wide range
of model toxins (147 in total) that served as the basis for
computer-based expert systems for toxicity prediction. The
project goals of the generation of comprehensive
metabonomic databases (now around 35,000 NMR spectra)
and successful and robust multivariate statistical models
(expert systems) for prediction of toxicity, initially for liver
and kidney toxicity in the rat and mouse, have now been
achieved, and the predictive systems and databases have been
transferred to the sponsoring companies (51). In addition,
interesting species differences (rat and mouse) in the toxicity
of one compound have been published (52).

Disease Diagnosis and Therapeutic Efficacy

Many examples exist in the literature on the use of NMR-
based metabolic profiling to aid human disease diagnosis, such
as the use of plasma to study diabetes, CSF for investigating

Alzheimer’s disease, synovial fluid for osteoarthritis, seminal
fluid for male infertility, and urine in the investigation of drug
overdose, renal transplantation, and various renal diseases. A
promising use of NMR spectroscopy of urine and plasma, as

evidenced by the number of publications on the subject, is in
the diagnosis of inborn errors of metabolism in children (53).
Most of the earlier studies using NMR spectroscopy have been

reviewed previously (54).
More recently, CSF sample analysis using NMR spec-

troscopy has been used to distinguish control subjects from

those with meningitis, and the various types of infection
(bacterial, viral, and fungal) could also be differentiated (55).
In another study, CSF analysis was used to investigate
aneurismal subarachnoid hemorrhage, and it was shown that

metabolic profiles derived using NMR spectroscopy correlated
with vasospasm and clinical outcome (56).

Tissues themselves can be studied by metabonomics

through the MAS technique, and published examples include
prostate cancer (57), renal cell carcinoma (58), breast cancer
(59), and various brain tumors (26,60). A number of mouse

models of cardiac disease, including Duchene muscular dystro-
phy, cardiac arrhythmia, and cardiac hypertrophy, have been
investigated using cardiac tissue MASNMR spectroscopy (61).

It was shown that although the mouse strain was a major
component of the mouse phenotype, it was possible to dis-
cover underlying profiles characteristic of each abnormality.

One area of disease where progress is being made using

NMR-based metabonomics studies of biofluids is cancer. This
if highlighted by a publication on the diagnosis of epithelial
ovarian cancer based on analysis of serum (62).

Metabonomics using NMR spectroscopy has been used
to develop a method for diagnosis of coronary artery disease
noninvasively through analysis of a blood serum sample (63).

Based on angiography, patients were classified into two
groups: those with normal coronary arteries and those with
triple coronary vessel disease. Around 80% of the NMR

spectra were used as a training set to provide a two-class
model after data filtering techniques had been applied, and the
samples from the two classes were easily distinguished. The
remaining 20% of the samples were used as a test set, and their

class was then predicted based on the derived model, with a
sensitivity of 92% and a specificity of 93%. It was also
possible to diagnose the severity of the disease that was pres-

ent by employing serum samples from patients with stenosis of
one, two, or three of the coronary arteries. Although this is a
simplistic indicator of disease severity, separation of the three

sample classes was evident, although none of the wide range of
conventional clinical risk factors that had been measured was
significantly different between the classes.

INTEGRATION OF -OMICS RESULTS

The value of obtaining multiple NMR spectroscopic (or
indeed other types of analysis) data sets from various biofluid
samples and tissues of the same animals collected at different
time points has been demonstrated. This procedure has been
termed integrated metabonomics (6) and can be used to
describe the changes in metabolism in different body
compartments affected by exposure to, for example, toxic
drugs (64,65). Such timed profiles in multiple compartments
are themselves characteristic of particular types and mecha-
nisms of pathology and can be used to give a more complete
description of the biochemical consequences than can be
obtained from one fluid or tissue alone.

Integration of metabonomics data with that from other
multivariate techniques in molecular biology such as from
gene array experiments or proteomics is also feasible. Thus, it
has also been possible to integrate data from transcriptomics
and metabonomics to find, after acetaminophen administra-
tion to mice, common metabolic pathways implicated by both
gene expression changes and changes in metabolism (66).
It has also been found that evaluation of both transcriptomic
and metabolic changes following administration of the toxin
bromobenzene provides a more sensitive approach for
detecting the effects of the toxin (67). In a similar fashion,
changes in gene expression detected in microarray experi-
ments can lead to the identification of changed enzyme activ-
ity, and this can also be achieved by analysis of metabolic
perturbations (68).

The integration of multiple complex data sets over a
cohort of samples is a major challenge, but if achieved
successfully, this will resent a novel approach to the identifi-
cation of combination biomarkers of a disease or pharmaceu-
tical effect. An initial approach that has coanalyzed NMR and
mass spectra (statistical heterospectroscopy, SHY) from a
toxin effect study has recently been published (37).

FUTURE PROSPECTS

It has become accepted that the main pharmaceutical
areas where metabonomics is impacting include validation of
animal models of disease, including genetically modified
animals, preclinical evaluation candidate drugs in safety
studies, assessment of safety in humans in clinical trials and
after product launch, quantitation, or ranking of the benefi-
cial effects of pharmaceuticals, improved understanding of
the causes of highly sporadic idiosyncratic toxicity of
marketed drugs, and patient stratification for clinical trials
and drug treatment (pharmacometabonomics).

In addition, in terms of disease studies, metabonomics is
playing a role in improved, differential diagnosis and prog-
nosis of human diseases, particularly for chronic and degen-
erative diseases, and for diseases caused by genetic effects. A
better understanding of large-scale human population differ-
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ences through epidemiological studies is also being achieved.
Other applications include studies on nutrition, sports,

medicine, and lifestyle, including the effects of diet, exercise,
and stress and evaluation of the effects of interactions
between drugs and between drugs and diet.

One of the long-term goals of using pharmacogenomic
approaches is to understand the genetic makeup of different
individuals (their genetic polymorphisms) and their varying
abilities to handle pharmaceuticals, both for their beneficial
effects and for identifying adverse effects. If personalized
healthcare is to become a reality, an individual’s drug treat-
ments must be tailored so as to achieve maximal efficacy and
avoid adverse drug reactions. Very recently, an alternative
approach to understanding intersubject variability in re-
sponse to drug treatment using a combination of multivariate
metabolic profiling and chemometrics to predict the metab-
olism and toxicity of a dosed substance, based solely on the
analysis and modeling of a predose metabolic profile, has
been developed (69). Unlike pharmacogenomics, this ap-
proach, which has been termed Bpharmacometabonomics,^ is
sensitive to both the genetic and modifying environmental
influences that determine the basal metabolic fingerprint of
an individual because these will also influence the outcome
of a chemical intervention. This new approach has been

illustrated with studies of the toxicity and metabolism of
compounds with very different modes of action, allyl alcohol,
galactosamine, and acetaminophen (paracetamol), adminis-
tered to rats.

A major initiative has been underway to investigate the
reporting needs and to consider recommendations for stan-
dardizing reporting arrangements for metabonomics studies,
and to this end, a Standard Metabolic Reporting Structures
(SMRS) group has been formed (http://www.smrsgroup.org).
This has produced a draft policy document that covers all of
those aspects of a metabolic study that are recommended for
recording, from the origin of a biological sample, the analysis
of material from that sample, and chemometric and statistical
approaches to retrieve information from the sample data, and
a summary publication has appeared (70). The various levels
and consequent detail for reporting needs, including journal
submissions, public databases, and regulatory submissions,
have also been addressed. In parallel, a scheme called ArMet
for capturing data and metadata from metabolic studies has
been proposed and developed (71). This has been followed
up with a workshop and discussion meeting sponsored by the
US National Institutes of Health, from which firm plans are
being developed to define standards in a number of areas
relevant to metabonomics, including characterization of

Fig. 5. Strengths, weaknesses, opportunities, and threats (SWOT) analysis of metabonomics.
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sample-related metadata, technical standards and related
data, metadata and QC matters for the analytical instrumen-
tation, data transfer methodologies and schema for imple-
mentation of such activities, and development of standard
vocabularies to enable transparent exchange of data (72).

NMR- and MS-based metabonomics are now recognized
as independent and widely used techniques for evaluating the
toxicity of drug candidate compounds, and it has been
adopted by a number of pharmaceutical companies into their
drug development protocols. For drug safety studies, it is
possible to identify the target organ of toxicity, derive the
biochemical mechanism of the toxicity, and determine the
combination of biochemical biomarkers for the onset,
progression, and regression of the lesion. Additionally, the
technique has been shown to be able to provide a metabolic
fingerprint of an organism (metabotyping) as an adjunct to
functional genomics and hence has applications in design of
drug clinical trials and for evaluation of genetically modified
animals as disease models.

Using metabonomics, it has proved possible to derive
new biochemically based assays for disease diagnosis and to
identify combination biomarkers for disease, which can then
be used to monitor the efficacy of drugs in clinical trials.
Thus, based on differences observed in metabonomic data-
bases from control animals and from animal models of
disease, diagnostic methods and biomarker combinations
might be derivable in a preclinical setting. Similarly, the use
of databases to derive predictive expert systems for human
disease diagnosis and the effects of therapy require compila-
tions from both normal human populations and patients
before, during, and after therapy.

In summary, it is clear that metabonomics will have an
impact in pharmaceutical Research & Development, and Fig.
5 summarizes a strengths, weaknesses, opportunities, and
threats (SWOT) analysis of the discipline. The analytical
procedures used are stable and robust and have a high degree
of reproducibility, and although advances will obviously be
made in the future, current data will always be readable and
interpretable. In contrast to other -omics, metabonomics
enjoys a good level of biological reproducibility, and the cost
per sample and per analyte is low. It has the advantage of not
having to preselect analytes, and through use of biofluids, it is
minimally invasive, with hypothesis generation studies being
easily possible. Metabolic biomarkers are closely identifiable
with real biological endpoints and provide a global systems
interpretation of biological effects, including the interactions
between multiple genomes such as humans and their gut
microflora. One major potential strength of metabonomics is
the possibility that metabolic biomarkers will be more easily
used across species than transcriptomic or proteomic bio-
markers, and this should be important for pharmaceutical
studies. On the other hand, metabonomics suffers from the use
of multiple analytical technologies, there are questions of the
sensitivity and dynamic range of the technologies used, and
the data sets are complex. Using chemometrics, it is possible
to overinterpret the data, but this is easily avoided by correct
statistical rigor. At present, the groups using metabonomics
are moving toward defining standards for data and opera-
tions, and a good start has been made, but there remains a
need for the regulatory agencies to be trained in the data
interpretation and for more well trained practitioners.

There is an inherent conservatism that would like to be
able to use a single biomarker or analyte for each diagnostic
test. However, the reality of the complexity of disease and
drug effects means that biomarker combinations will be more
usual, and thus, there will be many opportunities for meta-
bonomics that are as yet underexplored, such as its use in
environmental toxicity studies, in directing the timing of
transcriptomic and proteomic experiments, and for deriving
theranostic biomarkers. It will surely be an integral part of
any multiomics study where all the data sets are combined to
derive an optimum set of biomarkers.

The ultimate goal of systems biology must be the inte-
gration of data acquired from living organisms at the genomic,
protein, and metabolite levels. In this respect, transcriptomics,
proteomics, and metabonomics will all play an important role.
Through the combination of these and related approaches will
come an improved understanding of an organism’s total
biology and, with this, better understanding of the causes and
progression of human diseases and, given the 21st century goal
of personalized healthcare, the improved design and develop-
ment of new and better targeted pharmaceuticals.
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